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• Introduction to our model of warm dense matter 
 
• How x-ray scattering spectra are calculated from it 
 

• Comparisons with experiments: 
 Room temperature/pressure beryllium 
 Warm dense beryllium 
 Warm dense aluminum 

  
• Predictions for warm dense beryllium and titanium 

 
• Conclusions 

 

Overview 



• e- density calculated assuming superposition  
  approximation: 

Model for warm and hot dense matter 
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• Pseudo-atom electron density: 
Calculated in spherical symmetry (inexpensive) 
Average atom type approach 
Kohn-Sham - DTF 

Electronic structure: 

C.E. Starrett et al, HEDP (2014) 



• Calculated with quantum Ornstein-Zernike relations 
Exact integral equations for fluid structure 

Model for warm and hot dense matter 

• 3 closure relations are needed  approximations: 
Ion-ion: VMHNC 
Electron-electron: local field corrections 
Ion-electron: from pseudo-atom electron density. 

Ionic structure: 

C.E. Starrett et al, HEDP (2014) 



Comparison for warm dense aluminum 

Example: 
Ion-ion pair distribution 
functions for aluminum 
 
Solid density (2.7g/cm3) 
 
 
Good agreement, much 
quicker! 

2eV 

6eV 

10eV 

15eV 



X-ray scattering 

Scattering is described by the dynamical structure factor 
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Energy transfer 

Momentum transfer 
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Calculating x-ray spectra 

• We use the Chihara formula 
Based on chemical picture 
Relies on clear separation between bound and  
screening (valence) electrons 
Suitable for simple fluids (eg. no bonding) 
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 elastic 

 free-free 

 bound-free 



Calculating x-ray spectra 

Fourier transform of bound electron density 
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Elastic feature: 

Fourier transform of screening electron density 
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We already calculate this in our model! 

A.N. Souza et al, PRE (2014) 



Calculating x-ray spectra 

( )ω,)()( 2 kSkqkf iiI +
Elastic feature: 

Width of ion feature of the order ~ meV, width of x-ray 
probe ~ eV, so this is reasonable. 

( ) )()(, ωδω kSkS iiii ≈

)(kSii Already calculated in our model! 

A.N. Souza et al, PRE (2014) 

),( kSii ω We plan to calculate this directly with MD 



Calculating x-ray spectra 

Random phase approximation (RPA) 
 Collisionless approximation – questionable! 
    Needs, free electron density, ion density, and 
 temperature as inputs (calculated in our model) 

( )ω, kSZ ee

Free-free feature 

Born-Mermin (BM) 
 Includes electron-ion collisions (perturbative) 
    Also needs ionic structure factor and interaction 
 potential (also calculated in our model) 

A.N. Souza et al, PRE (2014) 



Calculating x-ray spectra 

Calculate bound-free matrix elements using  
wave-functions from model (bound and free) 
 
DFT wave-functions and eigenvalues – band gap  
problem! 
 

( )ω,kSbf

Bound-free feature 

W. Johnson et al, PRE (2012) 



Validation on cold (solid) beryllium 

Mattern et al, PRB (2012) 

eVE f 9890=

eVFWHM 3.1=
Free-free (RPA): too narrow, 
too strongly peaked 
Bound-free: edge shifted, 
otherwise ok, tail in good 
agreement 

Overall, reasonable agreement given 
ours is a plasma model 



Warm dense beryllium: Normalization 

HJ Lee et al, PRL (2009) 

eVEi 6200≈

Arbitrary normalization 
 90o  Scattered spectrum 
incompatible with source! 

Mn He-α source 

13eV 
3ρo = 5.55g/cm3 

 



Warm dense beryllium: Components 

HJ Lee et al, PRL (2009) 

Inelastic components are 
shifted to lower energies 
compared to probe energy 
 
Increase left-hand peak relative 
to right-hand 
Opposite to what is observed! 
 
This implies variability in the 
probe beam 



Warm dense beryllium: Sensitivity 

HJ Lee et al, PRL (2009) 

± 30% in temperature or density 
 
Arguable that all curves fit data 
well, especially given source 
variability and arbitrary 
normalization 
 
Large error bars on density 
and temperature from fit. 
Uncertainty too large to 
constrain models 



Warm dense aluminum 

T. Ma et al, PRL (2013) 

eVEi 17900≈

Absolute measurements 
 Good agreement at 69o 

Strong disagreement at 111o 

Mo 2p1s source: 
325eV FWHM Gaussian 

10eV 
3ρo = 8.1g/cm3 

 



Warm dense aluminum 

We checked: 
• bound-free: compared to 
independent calculation (MUZE) 
• Bound states against Dirac-
Fock-Slater calculation 
• Normalization vs. sum rules 
• Exchange correlation potential 
• Sii(k) vs. QMD 
• RPA with 2 independent codes 
• Validity of RPA 
• Sensitivity to density and 
temperature (± 30%) 
• Chihara model assumptions 
 



Warm dense aluminum 

Conclusion: 
 Data at 111o cannot be 
reconciled with our model 
 



Hypothetical experiment on WD beryllium 

eVE f 9890=
eVFWHM 3.1=

13eV 
3ρo = 5.55g/cm3 

 

Temperature affect: 
Blurring of Fermi-

edge 



Resonances in warm dense titanium 

Average atom predicts resonance structures that are 
expected to be too sharp, due to spherical symmetry 

5eV 
4.51g/cm3 

Angle: 130o 

 

keVEi 4750=
Mono-energetic source 

 

Source spectrum would need to be narrow (~few eV) to 
measure width of feature 

Chihara formula assumptions may break down 



Next steps for theory 

• Improve free-free calculation.  RPA and BM questionable 
for WDM – could use wave functions or density of states to 
improve free-free 
 
• Beyond the Chihara formula 

However, the theory has not yet been 
proved inadequate by experiment! 



Conclusions 

• We have seen little sensitivity in density and temperature 
for experiments on Be and Al 
  May be greater sensitivity in other  
  thermodynamic regimes 
 
• Ability of experiments to test models hindered by source 
variability and large energy width of source spectrum 
 

• Chihara formula must be used with caution – assumptions 
not valid at or near pressure ionization, or where binding is 
significant 
 



In an ideal world… 

For a probe beam width < 5eV we could look at:  
• Bound state  resonance transitions 
• Broadening of bound-free edge due to smearing out of 
   bound states into bands 
• Is the RPA good enough for free-free? 
• Bound state energies vs. DFT energies 
• Break-down of Chihara formula near pressure     
  ionization? 

 
In short, we could probe the microscopic physics of warm 
dense matter and see how well (or poorly!) the models do 
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Backup slides: aluminum elastic feature 



Backup slides: WD beryllium elastic feature 
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